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Chaotic scattering at different projectile incident energies is studied for a model which involves
a two-body van der Waals—type interaction. At higher energies one finds characteristics typical for
hyperbolic chaotic scattering. For sufficiently low energies hyperbolic and nonhyperbolic chaotic
scattering are found to coexist at the same energy. The mechanism of this coexistence is discussed
in terms of the Lyapunov exponent and the fractal dimension. Arguments are put forward for an
increase in the fractal dimension of the set of singularities leading to nonhyperbolic chaotic scattering.
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A most natural and important source of information
in physics is scattering experiments. This fact points to
the importance of a detailed understanding of the mech-
anism of scattering at the classical level, which, with the
help of the semiclassical arguments, can shed more light
on generic properties of the quantum counterparts. It
is by now well recognized [1] that the universal feature
of scattering in classical mechanics is irregularity. Since
in scattering a trajectory stays in the interaction region
for finite time only, one refers to the resulting chaotic
motion as “transient chaos.” It manifests itself in an ex-
tremely strong sensitivity of the scattering angle 0 or the
delay time on impact parameter [2]. An interesting as-
pect of such processes is the appearance of the fractal
set of singularities [3]. The underlying dynamics can be
classified as either hyperbolic or nonhyperbolic. In the
hyperbolic chaotic scattering there are no tori in the scat-
tering region and all periodic orbits are unstable. The
typical delay-time probability behaves exponentially in
this case [4]. On the quantum level, this corresponds
[5] to Ericson fluctuations [6]. The distribution of reso-
nance poles in the complex energy plane is conjectured
[7] to generically reveal the cubic pole repulsion. Non-
hyperbolic chaotic scattering [8], on the other hand, is
connected to the presence of Kolmogorov-Arnold-Moser
(KAM) surfaces and, as current evidence indicates, is
characterized by power-law decay [9]. On the quantum
level, this leads [10] to a cusp shape of the autocorrela-
tion function typical for isolated resonances. The nature
of nonhyperbolic chaotic scattering is, however, not so
well understood as in the hyperbolic case.

In view of both universal and practical aspects of the
above problems, in this paper we address the question of
classical chaotic scattering using a model which involves
the basic ingredients of realistic physical systems and
which simultaneously allows us to perform a fully quan-
titative and extensive numerical analysis. Many effective
interactions in physical systems are well described by po-
tentials which are of the van der Waals type, i.e., they in-
clude weak long-range repulsion, intermediate-range at-
traction, and short-range strong repulsion. Such a form
of the potential is therefore adopted here to generate the
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two-body interaction. Its precise shape corresponds to
the a-« interaction and is specified in Ref. [11]. Our sys-
tem is composed of four bodies. Three of them are frozen
in the plane at the corners of an equilateral triangle and
form the target. The corresponding equipotential lines
are shown in Fig. 1. The fourth particle, restricted to
the same plane, constitutes the projectile coming from
the right with initial momentum parallel to the z axis.
The mass of the projectile equals the mass of the a par-
ticle (nucleus of *He).

At higher scattering energy where the projectile is af-
fected by essentially only the repulsive cores, generated
by the three centers, one obtains an already familiar pic-
ture. In certain regions of the impact parameter the delay
time displays a very irregular behavior and the singular-
ities form a fractal set, as is illustrated in the left part
of Fig. 2 for an energy of E = 12 MeV. Here the fractal
dimension D is uniquely defined and application of the
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FIG. 1. Contour plot of the equipotential lines of the tar-
get, shown at intervals of 2 MeV. The centers are located at
(—v/3a/3,0), (v/3a/6,a/2) and (1/3a/6,—a/2) respectively,
where a = 4.1.
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uncertainty exponent technique [12, 13] gives D = 0.64.
A pair of trajectories is counted as uncertain if they dif-
fer in @ by more than 7/2. The resulting “uncertainty
dimension” D [13] equals the capacity dimension Dq [4].
Following the concepts of the transport theory [14], by
uniform random sampling of the whole interval of impact
parameters one determines the number N (t) of trajecto-
ries remaining in the interaction region up to time ¢. At
E=12 MeV we observe that the asymptotic dependence
(dotted line) is exponential. The solid line is calculated
independently, according to the prescription [15]

N (t) = Ng exp[—A(1 — D)t], (1)

where A denotes the Lyapunov exponent and Ny the to-
tal number of trajectories. Justification for such a pre-
scription comes from the following consideration. The
phenomenon under consideration can be visualized as in-
volving two ingredients. One is the geometry of the frac-
tal set connected to the form of the potential. Consistent
with the structure of such a set it is natural to expect that
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FIG. 2. Upper part: Delay time versus impact parameter
b for scattering off the target as shown in Fig. 1 for £ = 12
MeV (Lh.s) and E = 3.5 MeV (r.h.s.). Lower part: the corre-
sponding N (t) for ensembles of 5 x 10° trajectories sampling
uniformly impact parameters from the interval (0.0, 0.6) cov-
ering all irregularities for £ = 12 MeV and from the interval
(1.0, 1.6) for E = 3.5 MeV. The dotted lines refer to the
numerical experiment, straight-solid lines are obtained using
Eq. (1) and the solid line is a fit reflecting asymptotic power
behavior (index —2.84) of N(t) at E = 3.5 MeV. The inset
illustrates the way in which X is evaluated by ensemble aver-
age. The integer n refers to the number of trajectories used,
surviving up to time t.
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the number N of trajectories remaining in the interaction
region after the ith iteration is proportional to the total
length of unremoved intervals. The removed intervals
after the ¢th iteration correspond to regular regions in
Fig. 2 after appropriate magnification, while those unre-
moved measure the dimension of singularities as ¢ — oco.
Thus N ~ m(%)e where m is the number of remaining ele-
mentary intervals and € is the length of one such interval.
Since m = el*™ = nm/Ine — =D thig yields N ~ ¢!~ D,
In this case D represents the capacity dimension Dy [4].
Possible nonuniformity in the fractal structure results in
replacing lnm by E;’;l P;In P;, where {P;} describes
partitioning of the trajectories over the unremoved inter-
vals. Thus, in general, D in formula (1) is the information
dimension D; (D; < Do) [4].

The second ingredient, the dynamics, describes the
speed of the above removal and fixes the time scale
between consecutive iterative steps. The way time in-
tervenes can be inferred from the relation €(i + 1) =
€(7) exp(—AAt), which holds asymptotically and where
At expresses how long it takes to evolve from the :th to
the (¢ + 1)th removal. Combining those two ingredients
one obtains Eq. (1).

To verify Eq. (1), in addition to the numerical value of
D, one also needs a precise value of the A. A standard
procedure [16] is to evolve an initial unit vector ¢ in tan-
gent space along a selected trajectory and to calculate
A(t) = In|d|/t. Then A = lims oo A(t) which requires
that the evolution has to be executed long enough, until
convergence is reached. For a scattering problem, char-
acterized by exponential decay, there exists no practical
means to get a trajectory that remains sufficiently long
in the interaction region. In an expomnentially unstable
case (the system loses memory) one expects, however,
a significant acceleration of the convergence by taking
A(t) = L7, A\i(t), where n denotes a certain number of
randomly chosen trajectories. We have tested the equiv-
alence of both procedures for the logistic map with pos-
itive result. For the scattering problem considered here,
averaging over trajectories remaining in the interaction
region up to time ¢ and analyzing such an average as a
function of ¢ allows us to evaluate A very precisely (see
inset to Fig. 2). One obtains A = 0.0863 (in units of
the inverse of 10723 s). Inserting the above values of D
and A into (1) gives the straight line in Fig. 2, which
perfectly agrees with the empirical result and provides a
consistency test.

At lower incident energies (E < 8 MeV) the situation
becomes more complicated. As shown on the right-hand
part of Fig. 2, for E = 3.5 MeV, the delay time ver-
sus impact parameter still displays a kind of self-similar
structure, but now the survival probability shows a trace
of an exponential behavior only for short times, up to
2.5x1072! 5. For longer times the decay is described by
the power law, N(t) = Not™*, with z = 2.84. Thus,
we face the coexistence of two different mechanisms of
chaotic scattering, hyperbolic and nonhyperbolic, at the
same energy.

Several questions arise. What initial conditions prefer-
ably lead to long trajectories? What is a nature of the
corresponding set of singularities? And finally, which in-
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FIG. 3. Surface of section through the in-
teraction region in  and p. at y = 0 with sep-
aration into shorter (1072! s< ¢t < 2.5x107%!
s) (upper left) and longer (t > 3.5 x 107 %!s)
(lower left) trajectories. The solid line defines

20 an envelope (see text). The symbols + and
x denote the points at which the trajectories

enter and leave the section, respectively. The
right hand part illustrates the structure of the
envelope studied using trajectories initialized
inside. The lower part shows a magnification
of the little dot indicated by the arrow.
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gredient, the fractal dimension D or the Lyapunov expo-
nent A alters Eq. (1), to account for the observed survival
probability?

Trying to answer the first question we find that there
exists no obvious distinction in impact parameters which
would lead to either short or long trajectories. All of
them are distributed in a similar way. More instructive
is analysis of the structure of the phase space in the in-
teraction region at the surface of section. One such sec-
tion in = and p, at y = 0 is shown in Fig. 3 with the
separation into shorter (102! s< t < 2.5 x 1072! s, up-
per left corner) and longer (¢t > 3.5 x 1072! s, lower left
part) trajectories. Such a separation defines an envelope
(indicated approximately by the solid line); no short tra-
jectory enters inside while all longer ones, from the power
tail, do. The content of the envelope cannot, however, be
studied systematically with the help of those trajectories
alone. All of them stay in its outer part. The toroidal
structures displayed on the right-hand part of Fig. 3 are
traced by the trajectories initialized inside the envelope.
These structures reveal self-similarity also.

Further evidence for the importance of the region in-
side the envelope comes from the following exercise.
Eliminating the influence of this region by no longer
counting the scattering trajectories entering it, or equiv-
alently, by assigning to them the time they enter the
envelope as a decay time, again results in exponential
decay. Moreover, as documented in Fig. 2, this feature is
also satisfactorily reproduced by Eq. (1), using the cor-
responding D which here equals 0.66 and A = 0.0077
(calculated by ensemble average). Thus, the region of
phase space which causes an extra delay is populated
with trajectories originating from exponential decay of
the ordinary transient. The two-step character of the
observed process essentially explains why initial condi-
tions leading to long trajectories (decaying according to
a power law), have the same distribution as all initial
conditions corresponding to irregular scattering.

Lau, Finn, and Ott suggest [13] that the fractal di-
mension associated with the set of singularities leading to
nonhyperbolic chaotic scattering approaches 1. The re-
quired set is modeled by a Cantor-like construction, but
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by removing at the ith stage a fraction 7; = a/(i + ¢) (@
and c are constants). Such a fraction represents the ratio
of trajectories escaping at the ¢th iteration. For constant
A, this is equivalent to the inverse proportionality to time
of such a ratio which converts Eq. (1) into a time depen-
dence which follows a power law. This becomes clear
by rewriting the corresponding equations in differential
form. In fact, Fig. 2 seems to support the existence of the
above kind of fractal set at E = 3.5 MeV. Qualitatively,
the density of singularities in successive blowups, involv-
ing the longer trajectories, is larger, while for £ = 12
MeV it remains unchanged. However, another possibil-
ity to effectively get the same result is to have the same
fraction 7; at each stage but appropriately slowing down
the speed of removal (A inversely proportional to time).
In fact, the A calculated along the few longest scatter-
ing trajectories identified at E = 3.5 MeV converges to
an even lower (as compared to 0.0077) value of about
0.0025. However, no lower value than this has been found
and A = 0.0021 seems to be a lower bound on the Lya-
punov exponent of scattering trajectories. This is the
A for the trajectory tracing the outermost closed curve
shown in the upper right corner of Fig. 3. When going
inside, the Lyapunov exponents decrease almost linearly
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FIG. 4. An illustration of how the fraction of uncertain
pairs scales as a function of the relative distance € for trajec-
tories initialized in the interval z € (—5.85165, —5.85005), at
y=0.
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with = and approach zero at the innermost curve shown.
But all scattering trajectories considered, although they
clearly determine the power-law decay, do not enter so
deeply. This provides indirect evidence for an increase of
the fractal dimension.

Reliable explicit evaluation of D based on long scat-
tering trajectories alone would be extremely difficult be-
cause the probability of an appearance of such trajecto-
ries is suppressed by many orders of magnitude. How-
ever, sufficiently many long trajectories can be generated
by initializing them inside the envelope. Then, a simi-
lar analysis as in Ref. [13], i.e., gradually improving the
resolution, results in a systematic increase of the uncer-
tainty dimension. Specifying initial conditions for z in
the interval (—5.85165, —5.85005) (at y=0), which is on
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the borderline set by numerical precision, gives D ~ 0.95
(see Fig. 4). This tendency, together with a finite lower
limit identified for A and the observed asymptotic behav-
ior of the survival probability, leads us to the conclusion
that the fractal dimensions, both Dy and D, approach 1
(but the Lebesgue measure remains zero), which confirms
and extends the suggestion of Lau, Finn, and Ott [13].
The comparatively large value of the power index in the
present model indicates, however, that such an approach
is very slow and the precise limit of unity may remain
unreachable by numerical means.
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